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Poor aqueous solubility is one of the major issues in drug discovery and development, impacting negatively
on all aspects of the research and development process. The pharmaceutical industry has realized that solubility
issues need to be resolved at the discovery stage. We here present an innovative way to address this problem
via a model designed to address the simple question, “Is the compound likely to be sufficiently soluble to
provide interpretable data in biological screening assays?” A recursive partitioning (RP) method was applied
to a set of 3563 molecules, with in house determined aqueous solubility values. Five models were generated
on the basis of a small number of descriptors affording intuitive information regarding structural features
influencing solubility. The final model was based on only two descriptors: the molecular weight (MW) and
the aromatic proportion (AP). This model provided satisfactory values of accuracy (81%) and precision
(75%) for a test set of 1200 compounds, suggesting that the model may add value in compound selection
and library design during early drug discovery.

Introduction

Modern drug discovery is a complex process that requires
problem solving in multiple dimensions, often using tools with
insufficient dimensionality. Prediction and modeling of physi-
cochemical properties represent one of these challenges. In view
of the number of parameters involved in determining the
aqueous solubility and the plethora of molecular descriptors
available, overfitting of models should always be treated with
care.

Drug distribution, delivery, and transport depend at least in
part on solubility. Solubility is also central to in vitro screening,
since low solubility frequently results in poor reproducibility
and unreliable results. If a drug precipitates before reaching its
cellular target, the target will be exposed to a concentration of
drug lower than the nominal and could therefore yield a response
that is diminished, undetectable, or independent of the input
concentration.1

Solubility issues can best be addressed at the discovery stage;
however, experimental testing for solubility can be time and
resource consuming, in particular when dealing with extremely
large compound collections in early phases of drug discovery.
Hence, methods are required to help the definition of acceptable
solubility at the compound design or acquisition stage. Com-
putational approaches capable of identifying compounds with

a high probability of being soluble (or insoluble, as the case
may be) would therefore be of value.

From our experience, solubility seems to be a particularly
pertinent issue when purchasing compounds from commercial
sources. From earlier work,2 66% of commercially available
compounds had solubility lower than 80 µM at pH 7.4 (see
Methods for assay conditions). Considering an average cost per
compound of $18, poor solubility can contribute a significant
cost when performing screening of tens or hundreds of thousands
of compounds in the initial phase of the drug discovery process.

A large number of computational approaches for prediction
of aqueous solubility have been published; models predicting
aqueous solubility based on molecular surface area, lipophilicity,
hydrophilic measures and electronic and topological descriptors
have all been reported.3 Several regression methods have been
presented, and among them neural networks represent a
particularly used approach4–13 while linear methods provide
results comparable to support vector regression.14,15 In the
literature, it is also possible to find less mathematically complex
methodologies, including linear regression, recursive partitioning
(RP),16 and partial least-squares analysis (PLS).a,17,18 However
to date, complex models based on methods such as neural
networks or continuum regression19 often provide better models
than simple methodologies, such as linear regression analysis.8

A common feature of the above models is that they are based
on heterogeneous data sets4–13 containing molecules with
structural features not commonly seen in drugs; for example,
solubility data of chemicals from pesticide lists have been used
for this purpose.20 Finally, these models also employ complex
descriptors of limited use in understanding structure–property
relationships, thus limiting usefulness when designing libraries.

We were interested in developing a model for predicting the
solubility of organic compounds as a decision aid to whether
or not to synthesize or purchase compounds rather than assigning
a predicted numerical solubility value. In line with this goal,
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we sought to distill the minimum requirements of a predictive
model to help classify virtual structures into “soluble” and
“insoluble”, without attempting a numerical or rank-ordering
approach. We were also attracted by the use of a limited number
of readily interpretable descriptors as already described in the
paper of Xia16 and Delaney.20 Thus, we chose the RP ap-
proach,21 which is a valuable tool in the simple handling of
nonlinear stepwise variable and complexity reduction. Moreover,
simple descriptors (including the druglikeness descriptors
developed by Lipinski22 and Veber23) and a set of homogeneous
experimental solubility data were used.

This “return to simplicity” seems to be a general trend in
current literature; Zhao et al.24 attempted to model brain
permeability data from selected sources, using a RP approach
for data classification. Another example used RP and reduced
descriptor sets in classifying compounds as possible ag-
gregants.25

The ultimate goal of the current work is to enrich our
compound collection with more soluble compounds in order to
achieve improved cost-effectiveness in compound purchasing
and synthesis efforts. The model described herein thus has two
main deliverables: the generation of a simple and efficient tool
to identify compounds with a high probability of being insoluble
(as defined by a predetermined cutoff value) to guide compound
purchasing and prioritization of libraries for synthesis and,
second, to use easily interpretable descriptors to represent factors
contributing to solubility within or across series. The latter
objective is subject to availability of a simple model, with few
parameters, directly interpretable in terms of structural features.

Methods

Solubility Data. In order to obtain a homogeneous data set
with a sufficient number of observations, with broad structural
diversity, and with high quality experimental data, we measured
aqueous solubility of 3563 compounds from our internal
compound collection. The data set included both compounds
synthesized internally and those purchased from commercial
sources, spanning about 10 diverse major chemical series
selected to be tested in 6 drug discovery projects plus many
other series (roughly 50) coming from diverse selections
performed on commercial libraries. Standard and sample solu-
tions were prepared from a 10 mM DMSO stock solution using
an automated dilution procedure to provide a nominal concen-
tration of 250 µM, diluted in acetonitrile/ammonium acetate
buffer at pH 7.4 (60/40 v/v), with a final DMSO content of
2.5% (v/v). Solubility was measured at pseudothermodynamic
equilibrium conditions by incubating 5 µL aliquots of test article
in 10 mM DMSO solution in 50 mM ammonium acetate buffer,
pH 7.4, with a final content of DMSO of 2.5% (v/v) after 24 h
of equilibration in a Millipore MultiScreen HTS 96-well
filtration plate (0.4 µm) at room temperature with shaking. All
liquid handling operations were conducted by an automated
procedure running on a PerkinElmer Multiprobe II EX liquid
handler. Following incubation, solutions were filtered on the

MultiScreen plate and the resulting concentration in the filtrate
and the standard solution measured using a Waters Acquity
UPLC/UV/TOF-MS system. Calculation was based on the UV
signal using UV detection at 254 nm, although both UV and
MS data were collected for data interpretation. Results were
presented as solubility in the range 1–250 µM; results falling
outside this range were denoted <1 µM or >250 µM.26,27

It is noted that although the final assay solution contained
2.5% DMSO, which to some extent may bias the exact value
of solubility vs the thermodynamic equilibrium methods, the
scope of the model was to classify compounds into “soluble”
and “insoluble”. We believe that the impact of this bias is small
and acceptable for the purpose of the current work.

The Response Set. Solubility data for the 3563 compounds
were collected to be used as the dependent variable to build
the statistical model, using a data range of 1-250 µM. For
partition tree purposes, the continuous values for aqueous
solubility were transformed into classes. Thus, a solubility
threshold value had to be identified to classify the set into
“soluble” and “insoluble” subsets. However, because the defini-
tion of the cutoff threshold is not straightforward, the response
variable was therefore classified into two groups on the basis
of threshold values of 20, 30, 40, 50, and 60 µM, respectively,
where in each case, compounds below these thresholds were
denoted as “insoluble” and compounds with values higher than
the cutoff were denoted as “soluble”. The number of soluble
and insoluble compounds in the data set for each threshold is
reported in Table 1.

Each response variable classification was then used to
generate RP models, resulting in five different models, hereafter
referred to as model 20, model 30, model 40, model 50, and
model 60.

The 2D structures for the 3563 compounds constituting the
data set, further split into training and test sets (details reported
in the next paragraph), were downloaded from our data
warehouse using the proprietary software Nucleo.2 Structures
were stored after counterion removal, addition of hydrogen
atoms, and adjustment of formal charges. In particular, the
ionization state of basic and acidic groups was adjusted to
physiological pH, using the LigPrep software.28 No 3D informa-
tion was used, as our main goal was to develop a model based
on easily interpretable, low-dimensional descriptors.

In order to assess compound diversity within this set of
molecules, a simple 3D chemical space, defined by molecular
weight (MW), log P (calculated as ALogP, using the Accord
SDK from Accelrys),29 and aromatic proportion of the molecule
(AP) as derived by Yan and Gasteiger,8 was explored.

Figure 1 shows a 3D representation of the results obtained
from this analysis suggesting that the data set covers a quite
large chemical space (100 < MW < 790; -2 < ALogP < 8;
0 < AP < 1). The vast majority of the data sits within a smaller
region corresponding to the “druglike zone” as identified by
Lipinski properties, since most of the compounds belonged to
relatively advanced drug discovery projects.

Training and Test Set Selection. The global data set of 3563
compounds was split into training and test sets by computing
fingerprints using OpenBabel.30 The resulting data set was
loaded into a Cerius229 study table, along with the experimen-
tally determined solubility values. A subset of 1200 molecules
was chosen via simultaneous optimization of structural diversity
as encoded by the fingerprints and the solubility data profile.
This subset was then used as the test set, and the remaining
2363 compounds were regarded as the training set for building
the RP model. In particular, the Monte Carlo algorithm was

Table 1. Distribution of “Soluble” and “Insoluble” Compounds
Corresponding to Each Solubility Threshold Value Used in the Study

solubility cutoff
value (µM)

no. of
“soluble” compds

no. of
“insoluble” compds

20 1630 1933
30 1702 1861
40 1760 1803
50 1822 1741
60 1895 1668
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applied to optimize an objective function consisting of two terms
encoding for structural diversity and the solubility data profile.
The former was evaluated by the MaxMin diversity function,
whereas the latter was used as a penalty function. This was

intended to afford a test set that was structurally representative
and with similar solubility profile to the original set, aiming to
reduce bias deriving from similar compounds in terms of both
structure and response variable. A principal component analysis
(PCA) was also performed by using a wider set of 2D
descriptors within the Cerius2 software for visualizing this
structural diversity in terms of physicochemical properties
(Figure 2).

It is worth highlighting that the test set was not used in any
model building but served as an independent test set used to
evaluate the generality of the predictive power of each model.

The Descriptor Set. Seven descriptors were calculated and
used as independent variables in the RP analysis: MW, ALogP,
polar surface area (PSA), number of rotatable bonds (RBT),
number of hydrogen bond donors (HBD), and number of
hydrogen bond acceptors (HBA). An additional key descriptor,
aromatic proportion (AP), was derived according to the proce-
dure of Yan and Gasteiger.8 The AP indicates the aromatic
degree of a molecule and is defined as the ratio of the number
of aromatic atoms to the total number of heavy atoms in the
molecule. In order to calculate AP, the Daylight SMARTS
definition of aromaticity was used, as derived from the unique
SMILES code of the molecules in Accord.

RP Model Generation. Five RP models were generated
corresponding to the threshold values used to split the data set
into “insoluble” and “soluble” compounds (Table 1). Recursive
partitioning decision trees were constructed using the quantita-
tive structure–activity relationships (QSAR) module in Cerius2.
In particular, the following settings were used. The Twoing
metric was used to score the splitting of the tree. This is reported
to give more balanced trees by splitting into nodes with roughly
the same number of examples.21 The tree was pruned backward
through a moderate pruning process. Moreover, nodes had to
contain a minimum of 1% of the samples to qualify for further
splits. Finally, knot limits (i.e., the number of threshold values
tested to split the range of each descriptor) per variable were
set to 20 and the maximum depth of the tree was limited to 10,
thus lowering the complexity of the resulting model.

During the five RP runs, each based on a different cutoff
value, the algorithm identified the optimal number of descriptors
out of the original seven that discriminated soluble and insoluble
compounds. Thus, a variable number of descriptors may be
involved in each RP output.

Results and Discussion

Inspired by the work of Delaney and co-workers,20 we
initially applied a linear regression to our proprietary data set,
using the same basic simple descriptors. Results were not
encouraging. While Delaney and co-workers managed to classify
72% of the compounds of their data set, in our hands, the same

Figure 1. Distribution of aqueous solubility across the 3563 compounds
in a 3D chemical space defined by MW, AP, and ALogP. Dots are
coloured in continuum by experimental solubility at pH 7.4. Gray refers
to 1 µM and black to 250 µM.

Figure 2. Training and test set compounds, as visualized in a PCA
score plot for the first three components. The training set is shown as
gray spheres, and the test set is shown as black spheres. The seven
descriptors (AP, MW, AlogP, AP, PSA, HBA, HBD) calculated to
derive the models were used to perform the PCA analysis.

Table 2. Results for the Five Generated RP Models over the Training and Test Sets

cutoff value (µM)a

20 30 40 50 60

training set test set training set test set training set test set training set test set training set test set

accuracyb 85.65 80.25 85.32 81.08 85.06 79.67 85.02 79.00 84.81 78.00
precisionb 82.73 72.97 82.41 75.09 81.34 73.10 81.56 72.25 80.64 71.08
sensitivityb 85.19 79.58 83.86 81.56 82.33 81.78 81.57 82.91 79.79 83.81
specificityb 86.22 80.69 86.99 80.74 88.10 78.13 88.77 76.06 90.18 73.51
descriptorsc AP, MW, AlogP AP, MW AP, MW, AlogP, RTB AP, MW, AlogP AP, MW, AlogP, RTB

a Threshold value used to split compounds of the data set into soluble and insoluble classes. See Methods for details. b Accuracy ) (TP + TN)/(TP +
TN + FP + FN). Precision ) TP/(TP + FP). Sensitivity ) TP/(TP + FN). Specificity ) TN/(TN + FP). All are expressed as %. TP, TN, FP, and FN are
true positive, true negative, false positive, false negative, respectively. c The reported descriptors were selected by the RP algorithm out of the original seven
for building the model.
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procedure and the same molecular properties (descriptors)
afforded only about 40% of correctly predicted compounds,
probably because of the different nature of the data set.

We thus changed to an approach more suited to our main
goal, i.e., developing a model for predicting solubility of organic
compounds as an aid to the decision of whether or not to
synthesize or purchase a compound. Rather than assigning a
predicted numerical solubility value to organic molecules, our
main objective was to find the answer to the simple question,
“Is this compound likely to be soluble?” RP appeared to be
suitable technique to address this yes/no question.

RP is a statistical technique that can be used to find patterns
in large data sets by building a decision tree. A data set is
recursively divided into subsets depending on the value of a
splitting criterion, such as the presence or absence of a feature.
The feature is chosen so that the subsets are as diverse as
possible according to a criterion such as, in this case, aqueous
solubility.

In the initial stages of drug discovery, little or no information
regarding pharmacological activity or structure–activity relation-
ships (SAR) is usually available to drive compound prioritiza-
tion, and computational tools for druglikeness, including
solubility, should be applied to improve quality of the screening
set. An additional objective of this work was to construct a
model based on a small number of readily interpretable
descriptors with the aim of capturing the molecular properties
driving solubility.

As a result, seven descriptors including MW, RTB, HBA,
HBD, PSA, ALogP, and AP were computed and five RP models
were generated. During model development, the RP algorithm
selected those descriptors out of the original seven able to give
the best performance in discriminating the two classes.

The goodness of the models was assessed by calculating
accuracy, precision, sensitivity, and specificity. Accuracy was
defined as the proportion of all true results (correctly classified
compounds) in the entire population. Precision reflects the ability
of a decision tree to predict a specific class (“insoluble” in the
current analysis). Sensitivity to the “insoluble” class is the
probability that if a compound is insoluble (i.e., with a measured
value below the cutoff threshold), the model will return it as a
true positive. Sensitivity to the “soluble” class is instead
equivalent to specificity, which is a measure of how well a
model identifies the negative cases, or “soluble” compounds in
this study. The average precision, sensitivity, specificity, and
accuracy of all the models for the training set were 81.7%,
82.5%, 88.1%, and 85.2%, respectively. For the test set they
were 72.9%, 81.9%, 77.8%, and 79.6%, respectively.

All models showed good performance, both in estimating and
in predicting compounds of the training and test sets, respec-
tively. Table 2 shows the calculated parameters for the five RP
models.

Overall goodness of classification was constant across the
five models, with only a slight decrement in the test set
performance for the models based on 40-60 µM cutoff values.
The best performing model was therefore able to correctly
classify 85% of the compounds in the training set and, more
importantly, 81% of the compounds in the test set. As our
interest was the development of a model for identifying insoluble
compounds, attention was focused more on precision and
sensitivity.

In the training set, the precision increases when going from
the lowest to the highest cutoff value. In the test set on the
other hand, a clear maximum (75%) is discerned with the 30
µM cutoff, implying that model 30 is affected by 25% of false

positives, i.e., soluble compounds erroneously assigned to the
“insoluble” class.

The sensitivity measure shows an opposite trend with respect
to the precision within the training set, with the highest value
associated with model 20 and the lowest value with model 60.
Nevertheless, in the test set, model 20 is characterized by the
lowest sensitivity value, increasing significantly for model 30
(increment of about 3%) and then further increasing in model
50 and model 60. In general, the percentage correctly predicted
of insoluble compounds ranged from 79% to 84%. As a
consequence, the percentage of false negatives ranged from 16%
to 21%.

Our final model selection criterion was based on the best
values of precision and sensitivity related to the test set. It is
noted that all the models showed similar performances, inde-
pendent of the solubility cutoff values and descriptors involved
in the model generation. However, the model based on the
threshold value of 30 µM appeared to be the most efficient in
terms of false negatives (cost reduction in avoiding synthesis
or purchase of insoluble compounds) and false positives
(rejection of a potentially interesting compound) and was thus
chosen as the insolubility prediction tool to be applied for the
filtering purpose in our virtual screening cascade.

The model (Figure 3) is characterized by 5 branches and 11
terminal nodes (or leaves). Each leaf identifies a subset of
compounds classified as “insoluble” (red squares, leaves num-
bers 1, 2, 4, 5, 7, 10) or “soluble” (black squares, leaves numbers
3, 6, 8, 9, 11).

The analysis of false positives (92 compounds) for the
selected model (Figure 4) revealed that about 26% (28 com-
pounds) of soluble compounds (i.e., solubility >30 µM)
erroneously predicted to be insoluble (solubility <30 µM) had
in fact solubility values lower than 60 µM, and 50% (46
compounds) had values lower than 100 µM. Thus, a substantial
portion of errors were derived from compounds that nevertheless
had limited solubility.

Conversely, about 25% (23 compounds) of false positives
were indeed relatively soluble compounds, i.e., with an experi-
mental solubility greater than 150 µM.

Figure 5 summarizes the results obtained for model 30. In
particular, the match between experimental estimated/predicted

Figure 3. Selected classification tree for predicting insoluble com-
pounds. AP and MW descriptors were used to classify compounds.
Numbers are the splitting criteria. Leaves classifying “insoluble”
compounds and the branches leading to their identification are
highlighted in red, whereas “soluble” compounds are shown in black.
Numbers in square boxes refer to the training set. The total number of
training set compounds and the number of true positives (true insoluble
in red squares and true soluble compounds in black squares) identified
by each leaf are reported.
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values is shown for each compound of the training and test sets,
respectively. Because the test set was chosen to be representative
of the entire data set and unbiased with respect to the training
set, the leaf profile for the former shows a similar trend to the
one for the latter, and the best performing leaves in the training
set are the same as in the test set. This is particularly true for
the leaves identifying insoluble compounds, which are those of
key interest. It appears that leaves numbers 1, 2, and 4 showed
a high percentage of correctly classified insoluble compounds
in both the training and the test sets. Leaves numbers 8 and 9
performed relatively better in finding soluble compounds.

RP trees allow for identification of those leaves and relative
branches that are characterized by the lowest error, and a useful
application of this feature is to rely only on the prediction of
such specific branches of the tree. In the selected model, most
of the leaves correctly classify a high percentage of insoluble
compounds with the lowest value of about 60%.

It should be emphasized that the selected model is based on
only two descriptors: MW and AP. The classification tree finds
the rules allowing for discriminating soluble and insoluble
compounds by defining a set of criteria (ranges) depending on
the MW and the aromaticity of the molecules.

The RP algorithm also explores three- (model 20 and model
50) and four-descriptor (model 40 and model 60) models in
function of the cutoff values. Notably, adding descriptors does
not appear to contribute significantly to the identification of
insoluble compounds.

The correlation (Table 3) among the descriptors originally
chosen to build the models was generally low. As expected,
PSA shows a good correlation with HBD and RTB correlates
well with MW. In the final models, PSA, HBA, and HBD were
never involved as splitting criteria between soluble and insoluble
compounds even though they are often associated with solubility
of organic molecules. The number of RTB was investigated
together with MW, despite their cross-correlation, in model 40
and model 60. These showed similar statistical values to model
20 and model 50 where RTB was not used. Hence, RTB seems
to make no significant contribution to the description of
insolubility with respect to MW.

Only four (MW, AP, AlogP, RTB) out of the original seven
descriptors were selected by the algorithm to build the five
models. Notably, they are the same descriptors used by Delaney
et al. in their linear regression to model solubility. This
underlines the central role of such descriptors in modeling this
parameter. Moreover, MW and AP are present in every model,
confirming their significant contribution to describe insolubility.
The aromatic proportion of a molecule has previously been
proposed20 as a key property related to flexibility and melting
point, while the molecular size is related to bulk molecular

properties and hence their relation with solubility. The influence
of MW on improving the estimation of water solubility has been
also shown.31

Hypothesis Testing vs Validation. Model Follow-Up. In
order to test the model predictivity using an additional external
test set, 49 randomly chosen compounds that were not part of
the original 3563 were selected.

The prediction values (Table 4) from the five models showed
a good performance. The percentage of insoluble compounds
was correctly predicted in a percentage ranging from 68%
(model 60) to 93% (model 40) of cases, while their relative
accuracy values in prediction ranged from 67% to 73%.

Assuming this test set was representative of a real project
case, the method was able to discard up to 93% of the insoluble
compounds. We consider this result to be an interesting
illustration of the potential of this approach.

In this particular case, model 30 did not show the best
performance (80% vs 93% in precision) as for the test set. This
might have been due to the physicochemical properties of this
set, which covered a restricted area of the wide descriptors space
of the original set (Figure 6).

Conclusions

Out of the five models generated, the best performing RP
tree was based on only two descriptors: AP containing informa-
tion about the aromaticity of molecules; the molecular weight.
The model was shown to have a high predictive power on the
test set and suggests the utility of this approach in the early
phase of the drug discovery process.

The results of the RP study should also be discussed in terms
of the properties of the input data set. For example, (i) the
performance of the two-descriptor model could be due to
peculiarities of the data set, as seen in the case of the validation
set of 49 compounds. (ii) Any generalization outside the
boundary of the data set is speculative. While these are common
limitations of any QSAR/QSPR method, in this case, a data set
of over 3500 structures was used, and even though major
structural classes within the data set may be identified as
belonging to a specific project, the set encompasses a wide
structural diversity, which will increase with the development
of the compound collection. Rather then being an end point,
the selected model is a working hypothesis that captures the
solubility trends in an internal data warehouse. Thus, updating
the data set will ensure a constant enrichment of the model in
terms of generality and broader application.

In contrast to more complex models the current study was
based on three distinct concepts. First, the property under
scrutiny is insolubility. With the aim of saving money and time,
insoluble compounds should be identified and rejected at the
selection stage. Second, the choice of a basic model and simple
descriptors; the Lipinski and Veber criteria owe their success
to the intuitive quality of their descriptors, making classification
trees easily accessible and interpretable. Third, we reasoned that
when dealing with large numbers of compounds, the need for
predicting numerical values for solubility would be less. The
challenge is to roughly determine if a compound may be
insoluble or not, or rephrasing the concept, if it is worth further
investigation.

As such, this limited descriptor based model affords intuitive
information regarding structural features influencing solubility.
It is derived from simple 2D information, is computationally
trivial, and provides a clear-cut output with a measurable
accuracy and precision.

Figure 4. Distribution of false positives resulting from the model based
on a cutoff value of 30 µM.
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The model is in routine use in our laboratories, and evaluation
of its performance will be monitored in correlation to reducing
the number of false negatives encountered in biological screen-
ing and overall savings in the iterations of compound design.
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Table 3. Correlation Matrixa between Descriptors Used for RP Modeling

PSA MW RTB HBA HBD AlogP AP

PSA 1.00 0.39 0.49 0.53 0.72 -0.32 -0.17
MW 0.39 1.00 0.80 0.43 0.23 0.47 -0.18
RTB 0.49 0.80 1.00 0.32 0.44 0.17 -0.44
HBA 0.53 0.43 0.32 1.00 0.08 -0.03 -0.19
HBD 0.72 0.23 0.44 0.08 1.00 -0.25 -0.14
AlogP -0.32 0.47 0.17 -0.03 -0.25 1.00 0.38
AP -0.17 -0.18 -0.44 -0.19 -0.14 0.38 1.00

a All values are correlation coefficients calculated for the whole data set of 3563 compounds.

Table 4. Results for a Test Set of 49 Randomly Chosen Compounds

accuracy, % precision, % sensitivity, %

model 20 67.35 80.65 57.14
model 30 67.35 80.65 57.14
model 40 73.47 93.94 72.43
model 50 69.39 79.41 50.00
model 60 67.35 68.57 45.00

Figure 6. Variance of the original set structures (gray spheres) and
the 49 compounds (black spheres) belonging to the small test set,
visualized in a PCA score plot for the first three components.
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